Wavelets from the Loop Scheme
نویسندگان
چکیده
A new wavelet-based geometric mesh compression algorithm was developed recently in the area of computer graphics by Khodakovsky, Schröder, and Sweldens in their interesting paper [23]. The new wavelets used in [23] were designed from the Loop scheme by using ideas and methods of [26, 27], where orthogonal wavelets with exponential decay and pre-wavelets with compact support were constructed. The wavelets have the same smoothness order as that of the basis function of the Loop scheme around the regular vertices which has a continuous second derivative; the wavelets also have smaller supports than those wavelets obtained by constructions in [26, 27] or any other compactly supported biorthogonal wavelets derived from the Loop scheme (e.g. [11, 12]). Hence, the wavelets used in [23] have a good time frequency localization. This leads to a very efficient geometric mesh compression algorithm as proposed in [23]. As a result, the algorithm in [23] outperforms several available geometric mesh compression schemes used in the area of computer graphics. However, it remains open whether the shifts and dilations of the wavelets form a Riesz basis of L2(R). Riesz property plays an important role in any wavelet-based compression algorithm and is critical for the stability of any wavelet-based numerical algorithms. We confirm here that the shifts and dilations of the wavelets used in [23] for the regular mesh, as expected, do indeed form a Riesz basis of L2(R) by applying the more general theory established in this paper.
منابع مشابه
Small Support Spline Riesz Wavelets in Low Dimensions
In [B. Han and Z. Shen, SIAM J. Math. Anal., 38 (2006), 530–556], a family of univariate short support Riesz wavelets was constructed from uniform B-splines. A bivariate spline Riesz wavelet basis from the Loop scheme was derived in [B. Han and Z. Shen, J. Fourier Anal. Appl., 11 (2005), 615–637]. Motivated by these two papers, we develop in this article a general theory and a construction meth...
متن کاملSolving infinite horizon optimal control problems of nonlinear interconnected large-scale dynamic systems via a Haar wavelet collocation scheme
We consider an approximation scheme using Haar wavelets for solving a class of infinite horizon optimal control problems (OCP's) of nonlinear interconnected large-scale dynamic systems. A computational method based on Haar wavelets in the time-domain is proposed for solving the optimal control problem. Haar wavelets integral operational matrix and direct collocation method are utilized to find ...
متن کاملDynamic Load Carrying Capacity of Mobile-Base Flexible-Link Manipulators: Feedback Linearization Control Approach
This paper focuses on the effects of closed- control on the calculation of the dynamic load carrying capacity (DLCC) for mobile-base flexible-link manipulators. In previously proposed methods in the literature of DLCC calculation in flexible robots, an open-loop control scheme is assumed, whereas in reality, robot control is achieved via closed loop approaches which could render the calculated ...
متن کاملLatency Compensation in Multi Chaotic Systems Using the Extended OGY Control Method
The problem discussed in this paper is the effect of latency time on the OGY chaos control methodology in multi chaotic systems. The Smith predictor, rhythmic and memory strategies are embedded in the OGY chaos control method to encounter loop latency. A comparison study is provided and the advantages of the Smith predictor approach are clearly evident from the closed loop responses. The comple...
متن کاملThe Leveraged Waveletsand Galerkin - Wavelets
We present a scheme that leverage orthonormal or biorthogonal wavelets to a new system of biorthogonal wavelets. The leveraged biorthogonal wavelets will have some nice properties. If we start with orthonormal wavelets, the leveraged scaling functions and wavelets are compactly supported and are diierentiable. The derivatives of the leveraged wavelets are orthogonal to their translations; the d...
متن کامل